Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors

Date: 22/08/2017
Author: De Pauw, B.; Kennedy, G.; Van Tichelen, K.; Geernaert, T.; Thienpont, H.; Berghmans, F.

Published in: Applied Sciences, 7(8):864

Excessive vibration of nuclear reactor components, such as the heat exchanger or the fuel assembly, should be avoided, as these may compromise their lifetime and potentially lead to safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants. However, identifying adequate sensors or techniques that can be successfully applied to record the vibrations of the components in a flow of liquid metal at elevated temperatures is very challenging. In this paper, we demonstrate the precise vibration measurements in a very representative fuel assembly mock-up in a lead-bismuth eutectic cooled installation using quasi-distributed fibre Bragg grating (FBG) based sensors. The unique properties of these sensors, in combination with a dedicated integration and mounting approach, allows for accounting of the severe geometrical constraints and allows characterising the vibration of the fuel assembly elements under nominal operation conditions. To that aim, we instrumented a single fuel pin within the fuel assembly with 84 FBGs and conducted spectral measurements with an acquisition rate of up to 5,000 measurements per second, enabling the monitoring of local strains of a few ". These measurements provide the information required to assess vibration-related safety hazards.